import numpy from .models import DB def getTemps(datasets, community_id, minyear, maxyear): model, scenario = datasets.split(',') data = DB.getTemps(minyear, maxyear, community_id, model, scenario) return data def avg_air_temp(temps): year_counter, total = 0, 0 for temp in temps: total += sum(temp[1]) year_counter += 1 return total / (year_counter * 12) def ann_air_indices(temps): ATI, AFI = 0.0, 0.0 # TODO: drop numpy indices = numpy.zeros((len(temps), 2), dtype='int') months = [0.0 for m in range(12)] days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] i = 0 for year in temps: j = 0 for month in months: months[j] = days[j] * year[1][j] j += 1 for ind in months: if ind >= 0.0: ATI = ATI + ind else: AFI = AFI + ind indices[i, 0], indices[i, 1] = int(ATI), int(AFI) ATI, AFI = 0.0, 0.0 i += 1 return indices def avg_air_indices(indices): # TODO: drop numpy temp = numpy.average(indices, axis=0) return (int(temp[0]), int(temp[1])) def des_air_indices(indices): if indices.shape[0] > 2: # TODO: drop numpy ati = numpy.sort(indices[:, 0]) afi = numpy.sort(indices[:, 1]) dti = (ati[-1] + ati[-2] + ati[-3]) / 3.0 dfi = (afi[0] + afi[1] + afi[2]) / 3.0 return (int(dti), int(dfi)) else: return (None, None) def communitiesSelect(): return [(c.id, c.name) for c in DB.getCommunities()] def datasetsSelect(): return [("{0.modelname},{0.scenario}".format(d), "{x} ({d.resolution}) - {d.modelname} {d.scenario}".format(d=d, x=d.datatype.title())) for d in DB.getDatasets()]