akindices/app/main/utils.py
Matthew Dillon b4ab8cbd1e Misc cleanup
2015-09-02 19:08:54 -07:00

71 lines
1.9 KiB
Python

import numpy
from .models import Temperature, Dataset
def getTemps(datasets, community_id, minyear, maxyear):
temps = Temperature.query.join(Dataset). \
filter(Dataset.id == Temperature.dataset_id,
Dataset.id == datasets,
Temperature.community_id == community_id,
Temperature.year >= minyear,
Temperature.year <= maxyear)
length = int(maxyear) - int(minyear)
temps_arr = numpy.zeros((length+1, 12))
i = 0
for t in temps.all():
temps_arr[i, :] = [t.january, t.february, t.march,
t.april, t.may, t.june,
t.july, t.august, t.september,
t.october, t.november, t.december]
i += 1
return temps_arr
def avg_air_temp(temps):
return numpy.average(temps)
def ann_air_indices(temps):
ATI, AFI = 0.0, 0.0
indices = numpy.zeros((temps.shape[0], 2), dtype='int')
months = [0.0 for m in range(12)]
days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
i = 0
for year in temps:
j = 0
for month in months:
months[j] = days[j] * year[j]
j += 1
for ind in months:
if ind >= 0.0:
ATI = ATI + ind
else:
AFI = AFI + ind
indices[i, 0], indices[i, 1] = int(ATI), int(AFI)
ATI, AFI = 0.0, 0.0
i += 1
return indices
def avg_air_indices(indices):
temp = numpy.average(indices, axis=0)
return (int(temp[0]), int(temp[1]))
def des_air_indices(indices):
if indices.shape[0] > 2:
ati = numpy.sort(indices[:, 0])
afi = numpy.sort(indices[:, 1])
dti = (ati[-1] + ati[-2] + ati[-3]) / 3.0
dfi = (afi[0] + afi[1] + afi[2]) / 3.0
return (int(dti), int(dfi))
else:
return (None, None)
def c_to_f(temp):
return (temp * 9. / 5.) + 32.